&S XRootD

XRootD Client Configuration &
API Reference

March 8, 2019
Release 4.9.0 and above
Michal Simon (CERN)

@)

~/_ 7

Contents

1 Introduction

2 Configuration File

3 Command line tools (xrdcp/xrdfs)
3.1 xrdep-copyfiles Lo
3.2 xrdfs - xrootd file and directory meta-data utility
3.3 Return Codes L o

4 Environment Variables
4.1 Categories oL
4.2 Index of Environment Variables

4.2.1

4.2.2

4.2.3

4.24

4.2.5

4.2.6

4.2.7

4.2.8

4.2.9

4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32

XRD_APPNAME
XRD_CLIENTMONITOR
XRD_CLIENTMONITORPARAM
XRD_CONNECTIONWINDOW
XRD_CONNECTIONRETRY
XRD_.CPCHUNKSIZE
XRD_CPINITTIMEOUT
XRD_CPPARALLELCHUNKS
XRD_CPTPCTIMEOUT
XRD_DATASERVERTTL
XRD_GLFNREDIRECTOR
XRD_LOADBALANCERTTL
XRD_LOCALMETALINKFILE
XRD_.LOGFILE
XRD.LOGLEVEL
XRD_LOGMASK
XRD_-MAXMETALINKWAIT
XRD_METALINKPROCESSING
XRD.NETWORKSTACK
XRDNODELAY o oo
XRD_OPENRECOVERY
XRD_PARALLELEVTLOOP
XRD_PLUGIN o o o
XRD_PLUGINCONFDIR
XRD_POLLERPREFERENCE
XRD_PREFERIPV4
XRD_READRECOVERY
XRD_REDIRECTLIMIT
XRD_REQUESTTIMEOUT
XRD_RUNFORKHANDLER
XRD_STREAMERRORWINDOW
XRD_STREAMTIMEOUT

4.2.33 XRD_SUBSTREAMSPERCHANNEL 18

4.2.34 XRD_TCPKEEPALIVE 18
4.2.35 XRD_TCPKEEPALIVEINTERVAL 18
4.2.36 XRD_TCPKEEPALIVEPROBES. 18
4.2.37 XRD_TCPKEEPALIVETIME 18
4.2.38 XRD_TIMEOUTRESOLUTION 19
4.2.39 XRD_.WORKERTHREADS 19
4.2.40 XRD_WRITERECOVERY 19
4.2.41 XRD_XCPBLOCKSIZE 19
4.3 Timeouts Explained00 19
4.3.1 Connection Window and Connection Retry 19
4.3.2 Stream Timeout 20
4.3.3 Stream Error Window 20
4.3.4 RequestTimeout 20
435 Time To Live o 21
4.3.6 How does it all come together? 21
4.3.7 xrdcp / XrdCl::CopyProcess Third-Party-Copy timeouts . 22
Client Declarative API 23
5.1 Operation Utilities o o 23
5.2 Operation Handlers 24
5.3 Pipelining Semantics Lo oL 26
5.4 List of Operations 27
5.4.1 File Operations 27
5.4.2 FileSystem Operations 31

1 Introduction

This document describes the client (XrdCl) component of XRootD framework.
In particular it focuses on configuration options of the client (configuration file,
environment variables, parameters) and on how they interact with each other.

XrdCl is a multi-threaded C++ implementation of XRootD client based
on an event-loop, and is provided by the libXrdC! library. The standard C+-+
API is documented here and is out of the scope of this document. The XrdCl
implementation is fully asynchronous (all the synchronous calls have been im-
plemented in terms of their asynchronous counterparts). All issued requests
are queued and sequentially processed by a single-threaded socket event-loop
(however in order to increase performance it is possible to employ more than
one event-loop). Also, all incoming responses are processed by the event-loop,
however all the response handlers are executed in a thread-pool. The behav-
ior of XrdCl can be tuned using a configuration file, environment variables or
XrdCl::DefaultEnv utility.

Low level connection handling is hidden from the user. Omnce a request
is issued a connection between the client and the server will be established
automatically, the connection will be kept alive for further reuse until TTL
timeout elapses. By default XrdCl is multiplexing all request through a single
physical connection, however it is possible to force the component to use multiple
physical connections (up to 16) in order to increase the performance over WAN
networks. It is also possible to force XrdCl to disconnect from a server (e.g. in
order to reestablish the connection with a new credential). When the connection
between client and server is being established the server may request the client
to authenticate (if so, the server will send a list of acceptable authentication
methods, e.g. krbs, gsi, etc.).

The XrdCl library is the base for following components: the command line
interface (zrdep and zrdfs), python bindings, SSI client and the Posix API.

In addition, this document, in the last section, describes the new declarative
client API introduced in version 4.9.0.

2 Configuration File

This section describes the XRootD client configuration file. By default XRootD
client will use the global config file: /ets/xrootd/client.conf. However, those set-
tings migh be overwritten by the user specific config file: ~ /.zrootd/client.conf
and Environment Variables. For the complete list of configurable parameters
please consult the Index of Environment Variables.

XRootD client supports protocol- and endpoint-level plug-ins. By convention a
single config file is expected per plug-in, as they are discovered and configured by
scanning configuration files. The plug-in manager will search for configuration
files in:

e /etc/xrootd/client.plugins.d/,

http://xrootd.org/doc/doxygen/current/html/annotated.html
http://xrootd.org/doc/python/xrootd-python/
http://xrootd.org/doc/dev49/ssi_reference-V2.htm
http://xrootd.org/doc/dev49/pss_config.htm#_Toc525070693

e ~/.xrootd/client.plugins.d/,
e and at a location pointed to by: XRD_PLUGINCONFDIR

An XRootD client plug-in configuration file should a contain following key-value
pairs:

e url followed by list of endpoints (by default root protocol is assumed) or
protocols

e lib followed by a path to the library implementing given plug-in
e enable followed by true or false

For example the following config file defines a plug-in for host.domain.edu end-
point (root protocol is being assumed) and http protocol:
url host .domain.edu; http://x*

lib = /usr/1ib64 /libAwsomePlugIn. so
enabled = true

3 Command line tools (xrdcp/xrdfs)

3.1 xrdcp - copy files

xrdcp [options] source destination
DESCRIPTION

The xrdcp utility copies one or more files from one location to another. The
data source and destination may be a local or remote file or directory. Addi-
tionally, the data source may also reside on multiple servers.

OPTIONS

-C | -—cksum type [:value | print | source]

Obtains the checksum of type (i.e. adler32, crc32, or md5) from the source,
computes the checksum at the destination, and verifies that they are the same.
If a value is specified, it is used as the source checksum. When print is specified,
the checksum at the destination is printed but is not verified.

-d | --debug lvl
Debug level: 1 (low), 2 (medium), 3 (high).

-F | --coerce
Ignores locking semantics on the destination file. This option may lead to file
corruption if not properly used.

-f | --force
Re-creates a file if it is already present.

-h | --help
Displays usage information.

-H | --license
Displays license terms and conditions.

-N | --nopbar
Does not display the progress bar.

-P | --posc
Requests POSC (persist-on-successful-close) processing to create a new file.
Files are automatically deleted should they not be successfully closed.

-D | --proxy proxyaddr:proxyport [NOT YET IMPLEMENTED]
Use proxyaddr:proxyport as a SOCKS4 proxy. Only numerical addresses are
supported.

-r | --recursive
Recursively copy all files starting at the given source directory.

--server
Runs as if in a server environment. Used only for server-side third party copy
support.

-s | --silent
Neither produces summary information nor displays the progress bar.

-y | -—sources num
Uses up to num sources to copy the file.

-S | --streams num
Uses num additional parallel streams to do the transfer. The maximum value
is 15. The default is 0 (i.e., use only the main stream).

--tpc [delegate] first | only

Copies the file from remote server to remote server using third-party-copy pro-
tocol (i.e., data flows from server to server). The source and destination servers
must support third party copies. Additional security restrictions may apply and
may cause the copy to fail if they cannot be satisfied. Argument 'first’ tries tpc
and if it fails, does a normal copy; while ’only’ fails the copy unless tpc suc-
ceeds. When ’delegate’ is specified, the copy delegates the command issuer’s
credentials to the target server which uses those credentials to authenticate with
the source server. Delegation is ignored if the target server is not configured to

use delegated credentials. Currently, only gsi credentials can be delegated.

-v | -=—verbose
Displays summary output.

-V | --version
Displays version information and immediately exits.

-z | --zip file
Copy given file from a ZIP archive (same as xrdcl.unzip opaque info).

-X | --xrate rate [NOT YET IMPLEMENTED]

Limits the copy speed to the specified rate. The rate may be qualified with the
letter k, m, or g to indicate kilo, mega, or giga bytes, respectively. The option
only applies when the source or destination is local.

-Z | --dynamic-src
File size may change during the copy.

-1 | --infiles fn
Specifies the file that contains a list of input files.

-p | -—-path
Automatically create remote destination path.

--parallel n
Number of copy jobs to be run simultaneously.

—--allow-http

Allow HTTP as source or destination protocol. Requires the XrdCIHttp client
plugin.

LEGACY OPTIONS

Legacy options are provided for backward compatability. These are now depre-
cated and should be avoided.

-adler
Equivalent to ”—cksum adler32:source”.

-DI pname numberval
Set the internal parameter pname with the numeric value numberval.

-DS pname stringval
Set the internal parameter pname with the string value stringval.

-md5
Equivalent to ”—cksum md5:source”.

_np
Equivalent to ”—nopbar”.

-OD cgi
Add cgi information cgi to any destination xrootd URL. You should specify the
opaque information directly on the destination URL.

-OS cgi
Add cgi information cgi to any source xrootd URL.

-X
Equivalent to "—sources 12”.

OPERANDS

source: a dash (i.e. -) indicating stanard in, a local file, a local directory name
suffixed by /, or an xrootd URL in the form of:
xroot:// [user@] host [:port] /absolutepath

The absolutepath can be a directory.

destination: a dash (i.e. -) indicating stanard out, a local file, a local directory
name suffixed by /, or an xrootd URL in the form:
xroot:// [user@]| host [:port] /absolutepath

The absolutepath can be a directory.

3.2 xrdfs - xrootd file and directory meta-data utility

xrdfs [no-cwd] host[:port] [command [args]]
DESCRIPTION

The xrdfs utility executes meta-data oriented operations (e.g., Is, mv, rm,
etc.) on one or more xrootd servers. Command help is available by invoking
xrdfs with no command line options or parameters and then typing "help” in
response to the input prompt.

OPTIONS

—no-cwd
No CWD is being preset in interactive mode.

COMMANDS

chmod path <user><group><other>
Modify permissions of the path. Permission string example: rwxr-x—x

Is [-]] [-u] [-R] [dirname]
Get directory listing.
-1 stat every entry and pring long listing
-u print paths as URLs
-R list subdirectories recursively
-D show duplicate entries

locate [-n] [-1r] [-d] <path>
Get the locations of the path.
-r refresh, don’t use cached locations
-n make the server return the response immediately (it may be incomplete)
-d do a recursive, deep locate in order to find data servers
-m prefer host names to IP addresses
-i ignore network dependencies (IPv6/IPv4)

mkdir [-p] [-m<user><group><other>| <dirname>

Creates a directory/tree of directories.
-p create the entire directory tree recursively
-m<user><group><other> permissions for newly created directories

mv <pathl> <path2>
Move pathl to path2 locally on the same server.

stat <path>

Get info about the file or directory.
-q query optional flag query parameter that makes xrdfs return error code

to the shell if the requested flag combination is not present; flags may be
combined together using ’|” or '&’ Available flags: XBitSet, IsDir, Other,
Offline, POSCPending, IsReadable, IsWriteable

statvfs <path>
Get info about a virtual file system.

query <code> <params>
Obtain server information. Query codes:
config <what> Server configuration; <what> is one of the following:

e bind_max - the maximum number of parallel streams
e chksum - the supported checksum

e pio_max - maximum number of parallel I/O requests

e readv_or_max - maximum size of a readv element
e readv_iov_max - maximum number of readv entries
e tpc - support for third party copies

e wan_port - the port to use for wan copies

e wan_window - the wan_port window size

e window - the tcp window size

e cms - the status of the cmsd

e role - the role in a cluster

e sitename - the site name

e version - the version of the server

checksumcancel <path> File checksum cancelation

checksum <path>File checksum

opaque <arg> Implementation dependent

opaquefile <arg> Implementation dependent

space <space> Logical space stats

stats <what> Server stats; <what> is a list of letters indicating information
to be returned:

e a - all statistics
e p - protocol statistics

e b - buffer usage statistics

s - scheduling statistics

e d - device polling statistics
e u - usage statistics

e i- server identification

e 7 - synchronized statistics
e] - connection statistics

xattr <path> Extended attributes

rm <filename>
Remove a file.

10

rmdir <dirname>
Remove a directory.

truncate <filename> <length>
Truncate a file.

prepare [-c| [-{] [-s] [-w] [-p priority] filenames

Prepare one or more files for access.
e -c co-locate staged files if possible
o -f refresh file access time even if the location is known
e s stage the files to disk if they are not online
e -w whe files will be accessed for modification
e -p priority of the request, 0 (lowest) - 3 (highest)

cat [-o localfile] file
Print contents of a file to stdout
-0 print to the specified local file

tail [-c bytes] [-f] file
Output last part of files to stdout.
-¢ num_bytes out last num_bytes -f output appended data as file grows

spaceinfo path
Get space statistics for given path.

3.3 Return Codes
e 0 : success
e 50 : generic error (e.g. config, internal, data, OS, command line option)
e 51 : socket related error
e 52 : postmaster related error
e 53 : XRootD related error
e 54 : redirection error

e 55 : query response was negative (this is not an error)

4 Environment Variables
This section describes XRootD client environment variables. The following list

of environment variables applies to zrdcp, zrdfs any other application using the
libXrdCl library, unless specified otherwise.

11

4.1 Categories

Limits/Performance:

XRD_PARALLELEVTLOOP

XRD_REDIRECTLIMIT

XRD_SUBSTREAMSPERCHANNEL

XRD_-WORKERTHREADS

Logging:

XRD_-LOGLEVEL

XRD_LOGFILE

XRD_-LOGMASK

Metalinks:

XRD_METALINKPROCESSING
XRD_.LOCALMETALINKFILE
XRD_GLFNREDIRECTOR

XRD_-MAXMETALINKWAIT

Monitoring:

XRD_APPNAME
XRD_CLIENTMONITOR

XRD_CLIENTMONITORPARAM

Networking:

XRD_-NETWORKSTACK

XRD_PREFERIPV4

Plug-in:

XRD_PLUGIN

XRD_PLUGINCONFDIR

Recovery:

¢ XRD_CONNECTIONRETRY

o XRD_OPENRECOVERY

¢ XRD_READRECOVERY

o XRD_WRITERECOVERY

o XRD_STREAMERRORWINDOW

TCP:
e XRD_NODELAY
¢ XRD_TCPKEEPALIVE
e XRD_TCPKEEPALIVEINTERVAL
e XRD_TCPKEEPALIVEPROBES
e XRD_TCPKEEPALIVETIME
Timeouts:

o XRD_CONNECTIONWINDOW
e XRD_REQUESTTIMEOUT

o XRD_STREAMTIMEOUT

e XRD_DATASERVERTTL

e XRD_.LOADBALANCERTTL

¢ XRD_TIMEOUTRESOLUTION

XrCl::CopyProcess / xrdcp:

e XRD_CPCHUNKSIZE

e XRD_CPINITTIMEOUT

e XRD_CPTPCTIMEOUT

o XRD_CPPARALLELCHUNKS

e XRD_XCPBLOCKSIZE

Others:

¢ XRD_POLLERPREFERENCE

o XRD_RUNFORKHANDLER

13

4.2 Index of Environment Variables
4.2.1 XRD_APPNAME

Override the application name reported to the server.
Default: disabled

4.2.2 XRD_CLIENTMONITOR

Path to the client monitor library.

Default: disabled

4.2.3 XRD_CLIENTMONITORPARAM
Additional optional parameters that will be passed to the monitoring object on
initialization.

Default: disabled

4.2.4 XRD_CONNECTIONWINDOW

A time window for the connection establishment. A connection failure is de-
clared if the connection is not established within the time window. If a connec-
tion failure happens earlier then another connection attempt will only be made
at the beginning of the next window.

Default: 120 (seconds)

4.2.5 XRD_CONNECTIONRETRY

Number of connection attempts that should be made (number of available con-
nection windows) before declaring a permanent failure.

Default: 5

4.2.6 XRD_CPCHUNKSIZE

Size of a single data chunk handled by xrdcp / XrdCl::CopyProcess.

Default: 16KiB

4.2.7 XRD_CPINITTIMEOUT

Maximum time allowed for the copy process to initialize, ie. open the source
and destination files.
Default: 600 (seconds)

4.2.8 XRD_CPPARALLELCHUNKS

Maximum number of asynchronous requests being processed by the xrdcp /
XrdCl::CopyProcess command at any given time.
Default: 4

14

4.2.9 XRD_CPTPCTIMEOUT

Maximum time allowed for a third-party copy operation to finish.

Default: 1800 (seconds)

4.2.10 XRD_DATASERVERTTL

Time period after which an idle connection to a data server should be closed.
Default: 300 (seconds)

4.2.11 XRD_GLFNREDIRECTOR

The redirector will be used as a last resort if the GLFN tag is specified in a
Metalink file.
Default: none

4.2.12 XRD_LOADBALANCERTTL

Time period after which an idle connection to a manager or a load balancer
should be closed.
Default: 1200 (seconds)

4.2.13 XRD_LOCALMETALINKFILE

Enable/Disable local Metalink file processing (by convention the following URL
schema has to be used: root://localfile//path/filename.metas) The localfile se-
mantic is now deprecated, use file://localhost/path/filename.metas instead!
Default: 0

4.2.14 XRD_LOGFILE

If set, the diagnostics will be printed to the specified file instead of stderr.
Default: disabled

4.2.15 XRD_LOGLEVEL

Determines the amount of diagnostics that should be printed. Valid values are:
Dump, Debug, Info, Warning, and Error.
Default: disabled

4.2.16 XRD_LOGMASK

Determines which diagnostics topics should be printed at all levels. It’s a ”|”
separated list of topics. The first element may be “All” in which case all the
topics are enabled and the subsequent elements may turn them off, or ”None”
in which case all the topics are disabled and the subsequent flags may turn them
on. If the topic name is prefixed with ”"”, then it means that the topic should

15

be disabled. If the topic name is not prefixed, then it means that the topic
should be enabled.

The log mask may as well be handled for each diagnostic level separately
by setting one or more of the following variables: XRD_LOGMASK_ERROR,
XRD_LOGMASK_WARNING, XRD_LOGMASK_INFO, XRD_LOGMASK _DE-
BUG, and XRD_LOGMASK_DUMP.

Available topics: AppMsg, UtilityMsg, FileMsg, PollerMsg, PostMasterMsg,
XRootDTransportMsg, TaskMgrMsg, XRootDMsg, FileSystemMsg, AsyncSock-
Msg
Default: The default for each level is ” All”, except for the Dump level, where
the default is ” All| “PollerMsg”. This means that, at the Dump level, all the
topics but ”PollerMsg” are enabled.

4.2.17 XRD_MAXMETALINKWAIT

The maximum time in seconds a client can be stalled by the server if a Metalink
redirector is available.
Default: 60 (seconds)

4.2.18 XRD_METALINKPROCESSING

Enable/Disable Metalink processing.
Default: 1

4.2.19 XRD_NETWORKSTACK

The network stack that the client should use to connect to the server. Possible
values are:

e TPAuto - automatically detect which IP stack to use

e TPAIl - use IPv6 stack (AF_INET6 sockets) and both IPv6 and IPv4
(mapped to IPv6) addresses

e IPv6 - use only IPv6 stack and addresses
e IPv4 - use only IPv4 stack (AF_INET sockets) and addresses
e ITPv4Mapped6 - use IPv6 stack and mapped IPv4 addresses

Default: IPAuto

4.2.20 XRD_NODELAY

Disables the Nagle algorithm if set to 1 (default), enables it if set to 0.
Default: 1

16

4.2.21 XRD_OPENRECOVERY

Determines if open recovery should be enabled or disabled for mutable (truncate
or create) opens.

Default: true

4.2.22 XRD_PARALLELEVTLOOP

The number of event loops.

Default: 1

4.2.23 XRD_PLUGIN

A default client plug-in to be used.

Default: none

4.2.24 XRD_PLUGINCONFDIR

A custom location containing client plug-in config files.
Default: none

4.2.25 XRD_POLLERPREFERENCE

A comma separated list of poller implementations in order of preference.
Default: built-in

4.2.26 XRD_PREFERIPV4

If set the client tries first IPv4 address (turned off by default).
Default: 0

4.2.27 XRD_READRECOVERY

Determines if read recovery should be enabled or disabled.
Default: true

4.2.28 XRD_REDIRECTLIMIT

Maximum number of allowed redirections.

Default: 16

4.2.29 XRD_REQUESTTIMEOUT

Default value for the time after which an error is declared if it was impossible
to get a response to a request.
Default: 1800 (seconds)

17

4.2.30 XRD_RUNFORKHANDLER
Determines whether the fork handlers should be enabled, making the API fork

safe.
Default: 0
4.2.31 XRD_STREAMERRORWINDOW

Time after which the permanent failure flags are cleared out and a new connec-
tion may be attempted if needed.

Default: 1800

4.2.32 XRD_STREAMTIMEOUT

Default value for the time after which a connection error is declared (and a re-
covery attempted) if there are unfulfilled requests and there is no socket activity
or a registered wait timeout.

Default: 60 (seconds)

4.2.33 XRD_SUBSTREAMSPERCHANNEL

Number of streams per session.

Default: 1

4.2.34 XRD_TCPKEEPALIVE

Enable/Disable the TCP keep alive functionality.

Default: 0

4.2.35 XRD_TCPKEEPALIVEINTERVAL

Interval between subsequent keepalive probes (Linux only).

Default: 75

4.2.36 XRD_TCPKEEPALIVEPROBES

Number of unacknowledged probes before considering the connection dead (Linux
only).
Default: 9

4.2.37 XRD_TCPKEEPALIVETIME

Time between last data packet sent and the first keepalive probe (Linux only).
Default: 7200

18

4.2.38 XRD_TIMEOUTRESOLUTION

Resolution for the timeout events. Ie. timeout events will be processed only
every XRD_TIMEOUTRESOLUTION seconds.
Default: 15 (seconds)

4.2.39 XRD_WORKERTHREADS

Number of threads processing user callbacks.
Default: 3

4.2.40 XRD_WRITERECOVERY

Determines if write recovery should be enabled or disabled.
Default: true

4.2.41 XRD_XCPBLOCKSIZE

Maximu size of a data block assigned to a single source in case of an extreme
copy transfer.
Default: 128MiB

4.3 Timeouts Explained
4.3.1 Connection Window and Connection Retry

The ConnectionWindow parameter is applied during client-server connection
and controls two aspects of this process:

e First of all, it controls the length of time allowed to establish an XRootD
connection (physical connection, XRootD hand-shake, and authentication
if required). It is important to note that Connection Window is ap-
plied per physical address. This means that if a connection fails be-
fore the end of current Connection Window and another physical address
is available it will be tried immediately.

e Secondly (if there are no more available physical addresses), it defines the
length of time that must elapse after a connection failure before the con-
nection can be retried. More precisely, the client has to wait until the
end of the current Connection Window before attempting another connec-
tion. The number of retries that might be attempted is controlled by
ConnectionRetry environment variable.

Let us illustrate all this with following example. Suppose XRootD client wants
to connect to a server with three physical IP address (2x IPv6 and 1x IPv4).
For the sake of argument let us suppose it will fail after 60s during the hand-
shake procedure, while connecting to the 1%t IPv6 address. What will happen
next? Since there are two more addresses available, the client will immediately
proceed to the next one. Now let us suppose that the cumulative time spent

19

on establishing the physical connection and on carrying out the hand-shake
exceeded 120s (nominal value of Connection Window). In this case the second
connection attempt will be timed out, and XRootD client will proceed to the
374 IP address. Again, let us suppose that similarly as in case of the 15¢ IP
address the connection failed after 60s. Since there are no more address to try,
the client will have to wait until the end of the current Connection Window (that
is for another 60s) before the connection procedure can be restarted. Now how
all this relates to the ConnectioRetry? The nominal value of ConnectioRetry
is 5, which means we can retry the whole procedure four more times (Note:
ConnectionRetry is not applied per single physical connection but
rather to the whole connection procedure).

4.3.2 Stream Timeout

The StreamTimeout parameter is applied during every request/response ex-
change after the client and the server established a connection. It defines the
maximum length of time that may elapse between the moment when the client
has sent a request and the moment when the client has received a response for
the request in question. If the time spent waiting for response from the server
exceeds the StreamTimeout an error is declared (and the client will disconnect
form the server).

There are two exceptions to the above stated rule:

e The server may force the client to reissue the request by sending kXR_-
wait response. In this case StreamTimeout does not apply to the original
request anymore.

e The server may explicitly instruct the client to not apply the Stream Time-
out to given request by sending kXR_waitresp.

4.3.3 Stream Error Window

The StreamError Window controls the length of time that needs to elapse after a
fatal error before the client may attempt to reconnect to the server. A fatal error
is declared eg. if the host name cannot be resolved, a low level Posix system
call fails (eg. connect/fentl/epool), or client runs out of connection retries.

4.3.4 RequestTimeout

The RequestTimeout parameter is applied to a logical XRootD operation (eg.
opening a file, listing directory, etc.) as a whole. It is the maximum length
of time that may elapse from the moment an operation has been issued using
XRootD client APT until it has been resolved (no matter how many underlying
requests it will trigger). If the RequestTimeout is exceeded an error is declared
and the operation is resolved as failed.

Note: The value of this parameter might be overwritten directly by the user of
XRootD client API by setting the timeout argument.

20

http://xrootd.org/doc/dev49/XRdv400.htm#_Toc517297831
http://xrootd.org/doc/dev49/XRdv400.htm#_Toc517297831
http://xrootd.org/doc/dev49/XRdv400.htm#_Toc517297832

4.3.5 Time To Live

A Time To Live (TTL) timeout controls the lifetime of an idle physical connec-
tion. If for the given communication channel the time length elapsed from last
exchange of request/response between the client and server exceeds the TTL
timeout the given connection will be terminated. There are two types of TTL
timeouts in XRootD client:

e DataServerTTL: a TTL timeout that is applied to Data Servers

e LoadBalancerTTL: a TTL timeout that is applied to Managers

4.3.6 How does it all come together?

Let us now consider an example in order to illustrate how all those timeouts
play along (for clarity please consult the diagram below). Suppose that
an XrdCl::File::Open(...) operation is being called and that there is no open
connection between the client and the server. The client will have to establish
the XRootD connection first (subject to Connection Window):

e open physical connection
e carry out hand-shake procedure (kXR_protocol, kXR_login, etc.)

Subsequently, the client will issue a kXR_open request (subject to Stream-
Timeout). Let us suppose that the server will respond with a kXR_redirect
redirecting the client to a data server. In this case, the client will have to open
another XRootD connection (again, subject to Connection Window) and then
send an open request (again, subject to StreamTimeout). Finally, once the
server responds, the open operation will be resolved. The whole process de-
scribed in the scenario above is subject to RequestTimeout.

Once the connections to the manager and data server become idle they will be
subject to respective TTL timeouts.

LoadBalancer TTL

Manager

DataServer TTL

_ >
3 i] i
5 3 § 5 s 5 4 | 4 | 4 ' Data Server
g s S - 5 7z 1 | 1 | 1 1
o -1 [1231 ! 1 ! 1 I
gt (| Y [=1 B I =Y N N !
1 1 1 i 1 15 §| 12 2 13 5 13
1 (I] 1 [| 1 1° & 1°
1 [Voo Xt ¥ [T |
1 [[| 1 ! 1 o [
1 [[' 1 1 [1
1 1 1 1 * 1 1
I 1 * 1 * 1 1 * 1 *
Connection Window Stream T/O Connection Window Stream T/O >(:|ient

21

4.3.7 xrdcp / XrdCl::CopyProcess Third-Party-Copy timeouts

The CPInitTimeout parameter is applied during initialization of a Third-Party-
Copy (TPC) transfer. It defines the maximum length of time that may elapse
until TPC transfer has been initialized (ie. open destination, open source, issue
sync, for more details please consult the TPC Protocol Reference).

The CPTPCTimeout parameter defines the maximum length of time that may
elapse between the moment when the actual transfer has been started and the
moment when it is finished (ie. it is applied to the second sync, for more details
please consult the TPC Protocol Reference).

22

http://xrootd.org/doc/dev49/tpc_protocol.htm
http://xrootd.org/doc/dev49/tpc_protocol.htm

N}

5 Client Declarative API

This section describes XRootD client declarative API introduced in version
4.9.0. For the standard XrdCl::File and XrdCl::FileSystem API please con-
sult our Doxygen documentation. Similarly as the standard XrdCl API, the
declarative APT allows to issue File and FileSystem operations, however its sole
focus is on facilitating the asynchronous programing model and chaining of op-
erations. Also, the new API has been designed to be more in line with modern
C++ programming practices (see example below).

File f;
std :: future<ChunkInfo> resp;

// open, read from and close the file

Pipeline p = Open(file ,url,OpenFlags::Read)
| Read(file ,offset ,size ,buffer) >> resp
| Close(file);

auto status = WaitFor(p);

5.1 Operation Utilities

There are several utilities for facilitating composition of operations:

e Pipeline: a class that can wrap any kind of operation (including com-
pound operations).

e Async: a utility for asynchronous execution of pipelines.
Returns: std::future< XrdCl:: XRootDStatus>

FileSystem fs(url);
std :: future <XRootDStatus> status =
Async(Truncate(fs ,path,size));

e WaitFor: a utility for synchronous execution of pipelines.
Returns: XrdCl::XRootDStatus.

FileSystem fs(url);
XRootDStatus status = WaitFor(Truncate(fs ,path,size));

e XrdCl::Fwd: a forward is used to pass values between different opera-
tions in a pipeline. In particular it can be used to forward a value from
an operation handler to a subsequent operation as an argument.

Consider following example of reading a whole file of unknown size:

23

http://xrootd.org/doc/doxygen/current/html/annotated.html

Fwd<uint32_t> size; // size of the file
Fwd<voidx*> buff; // buffer for the data

std :: future<ChunkInfo> resp; // server response

auto &&p = Open(file ,url ,OpenFlags:: Read) >>

[size , buff](XRootDStatus &status ,StatInfo &info)

if (! status .IsOK()) return;
size = info.GetSize(); // forward size and
buff = new char[info.GetSize()]; // buffer

| Read(file ,0,size ,buff) >> resp
| Close(file);

auto status = WaitFor(p);

In lines 2-3 we declare forwardable size and buffer arguments. In the

pipeline we first issue an open, which we handle with a lambda (open
returns also stat information). Inside of the lambda (lines 11-12) we set
the values of size and buffer. In the subsequent Read (line 14) operation
we use the size and buffer although they values will be only set once we
get the response for the preceding Open.

e XrdCl::Parallel: aggregates several operations (might be compound op-
erations) for parallel execution; as an argument accepts variable number
of operations or a container of operations (see example below).

auto &&ol = Open(filel ,urll ,OpenFlags:: Read) ;
auto &=&02 = Open(file2 ,url2 ;OpenFlags:: Read) ;
auto &&o02 = Open(file2 ,url2 ,OpenFlags:: Read) ;

// open 3 files in parallel
Pipeline p = Parallel(ol,02,03);

auto status = WaitFor(p);

5.2 Operation Handlers

The declarative API supports following handlers: XrdCl::ResponseHandler, func-
tions, function objects, lambdas, std::future and std::package_task (consult the
list below for respective examples). Each operation defines its response type
(see List of Operations) that should be used when constructing a respective
handler for the operation.

e XrdCl::ResponseHandler —standard XRootD response handler. Oper-
ations can accept XrdCl::ResponseHandler both by reference and pointer.

24

_ e e R e e
SIS R C R [

class ExampleHandler : public ResponseHandler

{
public:
void HandleResponse (
XRootDStatus *status, // status of the operation
AnyObject *response // server response (type erased)
)
// handle the operation here
I

FileSystem fs(url);
ExampleHandler hndl;

auto status = WaitFor(Stat(fs,path) >> hndl);

e functions / function objects / lambdas — the XRootD declarative
API plays well with standard C++ callable elements. The callback signa-
ture has to match:

— std::function<void(XRootDStatusé) for operations that define their
response type as void.

— std::function<void(XRootDStatusés, Responseés)> where Response is
defined as a response type for given operation.

void ExampleHandler (
XRootDStatus &status, // status of the operation
StatInfo &info // server response (explicit type)

)

// handle the operation here

FileSystem fs(url);
// could also be a lambda or function object !!!
auto status = WaitFor(Stat(fs,path) >> ExampleHandler);

o std::future — the future’s template parameter has to match the response
type of given operation. In case of a failure the future will throw an in-
stance of XrdCl::PipelineEzception that in turn will yield the XrdCl:: XRo-
otDStatus.

25

16

File file;
std :: future<ChunkInfo> resp;

Async(Read(off ,size ,buff) >> resp);

// later on process the future
try

{

// if everything went OK we will get the ChunklInfo,
// otherwise it will throw
ChunkInfo chunk = resp.get();

}

catch(PipelineException &ex)

{

// we will learn the reason for failing from
// the status object
XRootDStatus &status = ex.GetError () ;

e std:packaged_task is a combination of a lambda and a std::future, e.g.
it can be used to parse the response with a lambda into a desired type of
std::future.

using namespace std;

packaged_task<uint64_t (XRootDStatus &st , StatInfo &info)> parse =
[](XRootDStatus &st, StatInfo &info)

if (!'st.IsOK) throw PipelineException(st);
return info.GetSize();

T

FileSystem fs(url);
future<uint64_t> size = parse.get_future();

Async(Stat(fs,path) >> parse);

// later on use size the same way as
// the future from previous example

5.3 Pipelining Semantics

Operations can be pipelined using operator]. In order to illustrate the pipelining
semantics we will consider following scenario: suppose one wants to read 1KB

26

form a files, however the prerequisite for reading is creating a lock file. Now let
us consider following code:

File lock, file;
FileSystem fs(url);
std :: future<ChunkInfo> resp; // server response

auto &&p = Open(lock , ”root://host//path/to/.lock”, OpenFlags::New)
| Close(lock)
| Open(file , "root://host//path/to/file.txt” ,OpenFlags::Read)
| Read(file ,0,1024,buff) >> resp
| Close(file);
| Rm(fs, ”"root://host//path/to/.lock”);

// we can already pass resp to an algorithm for processing

// we wait for the pipeline to complete
auto status = WaitFor(p);

In lines 6-7 the lock file is being created. Afterwards, in lines 8-10 the pipeline
continues: it does an open, a read and a close on the actual file. Finally, in line
11 the lock file is being deleted. Note that if an operation on the pipeline fails
subsequent operations in the pipeline wont be executed, however their handlers
will be called with an error status of errPipelineFailed (in order to allow for a
clean up if necessary). Using the pipelining API makes the source code more
coherent and the control flow more explicit.

5.4 List of Operations

There are two types of operations: the XrdCl::File operations and XrdCl::FileSys-
tem operations. Each operation has a well defined set of arguments, however
any argument might be lifted to a std::future or a XrdCl::Fwd. It is possible
(but not mandatory) to specify a handler for each operation using the stream-
ing operator (operator>>). All Operations are non-copyable objects (move
only).

5.4.1 File Operations

All arguments of any File Operation (except for the XrdCl::File object itself)
are liftable to XrdCl::Fwd and std::future.

e Open — open remote / local file

27

Signature:

— Open(XrdCl::File &file, ...);

— Open(XrdCl::File *file, ...);
Arguments (remaining):

— url — base type: std::string

— flags — base type: XrdCl::OpenFlags::Flags

— mode — base type: XrdCl::Access::Mode, default: Access::None
Operation status: XRootDStatus

Response:

— woid
- erC'lStatInfo (not for XrdCl::ResponseHandler)

e Read - read data from remote / local file
Signature:
— Read(XrdCl::File &file, ...);
— Read(XrdCl::File *file, ...);
Arguments (remaining):
— offset — base type: wint6/_t

— size — base type: uint32_t
— buffer — base type: void*

Operation status: XRootDStatus
Response: XrdCl::ChunkInfo

e Close — close remote / local file

Signature:

— Close(XrdCl::File &file);
— Close(XrdCl::File *file);

Operation status: XRootDStatus

Response: void

e Stat — stat the remote / local file

28

Signature:
— Stat(XrdCl::File 6file, ...);
— Stat(XrdCl::File *file, ...);
Arguments (remaining):
— force — base type: bool

Operation status: XRootDStatus
Response: XrdCl::StatInfo

Write — write data to remote / local file
Signature:

— Write(XrdCl::File Efile, ...);

— Write(XrdCl::File *file, ...);
Arguments (remaining):

— offset — base type: wint64_t

— size — base type: uint32-t
— buffer — base type: void*
Operation status: XRootDStatus

Response: void

Sync — sync the remote / local file

Signature:

— Sync(XrdCl::File Efile);
— Sync(XrdCl::File *file);

Operation status: XRootDStatus

Response: void

Truncate — truncate the remote / local file

Signature:

— Truncate(XrdCl::File Efile, ...);
— Truncate(XrdCl::File *file, ...);

Arguments (remaining):
— size — base type: uint64_t

Operation status: XRootDStatus

Response: void

29

e VectorRead — vector-read data from remote / local file

Signature:

— VectorRead(XrdCl::File Efile, ...);
— VectorRead(XrdCl::File *file, ...);

Arguments (remaining):
— chunks — base type: XrdCl::ChunkList
— buffer — base type: void*

Operation status: XRootDStatus
Response: XrdCl::ChunkList

e VectorWrite — vector-write data to remote / local file

Signature:

— VectorWrite(XrdCl::File &file, ...);
— VectorWrite(XrdCl::File *file, ...);

Arguments (remaining):
— chunks — base type: XrdCl::ChunkList

Operation status: XRootDStatus

Response: void

e WriteV — writev data to remote / local file
Signature:
— WriteV(XrdCl::File Efile, ...);
— WriteV(XrdCl::File *file, ...);
Arguments (remaining):

— offset — base type: uint6/_t

— iov — base type: struct iovec*
— iovent — base type: int

Operation status: XRootDStatus

Response: void

30

e Fcntl — issue fentl for remote / local file

Signature:
— Fentl(XrdCl::File Efile, ...);
— Fentl(XrdCl::File *file, ...);
Arguments (remaining):
— arg — base type: XrdCl::Buffer

Operation status: XRootDStatus
Response: XrdCl::Buffer

e Visa — issue fentl for remote / local file

Signature:

— Visa(XrdCl::File Efile);

— Visa(XrdCl::File *file);
Operation status: XRootDStatus
Response: XrdCl::Buffer

5.4.2 FileSystem Operations

All arguments of any FileSystem Operation (except for the XrdCl::FileSystem
object itself) are liftable to XrdCl::Fwd and std::future.

e Locate — locate remote file

Signature:

— Locate(XrdCl::FileSystem &file, ...);
— Locate(XrdCl::FileSystem *file, ...);

Arguments (remaining):

— path — base type: std::string
— flags — base type: XrdCl::OpenFlags::Flags

Operation status: XRootDStatus

Response: LocationInfo

e DeepLocate — recursively locate remote file

31

Signature:

— DeepLocate(XrdCl::FileSystem Efile, ...);

— DeepLocate(XrdCl::FileSystem *file, ...);
Arguments (remaining):

— path — base type: std::string

— @ — base type: XrdCl::OpenFlags::Flags
Operation status: XRootDStatus

Response: LocationInfo

e Mv — move remote file

Signature:

— Muv(XrdCl::FileSystem Efile, ...);

— Muv(XrdCl::FileSystem *file, ...);
Arguments (remaining):

— pathl — base type: std::string

— @ — base type: std::string
Operation status: XRootDStatus

Response: void

e Query — query remote server

Signature:

— Query(XrdCl::FileSystem &ifile, ...);
— Query(XrdCl::FileSystem *file, ...);

Arguments (remaining):

— queryCode — base type: XrdCl::QueryCode::Code
— argument — base type: XrdCl::Buffer

Operation status: XRootDStatus
Response: XrdCl::Buffer

e Truncate — truncate remote file

32

Signature:

— Truncate(XrdCl::FileSystem Efile, . ..
— Truncate(XrdCl::FileSystem *file, ..

Arguments (remaining):
— path — base type: std::string
— Ef base type: wint64_t
Operation status: XRootDStatus
Response: void

Rm — remove remote file

Signature:

— Rm(XrdCl::FileSystem Efile, ..
— Rm(XrdCl::FileSystem *file, ..

Arguments (remaining):
— path — base type: std::string

Operation status: XRootDStatus

Response: void

MKkDir — create remote directory

Signature:

— MkDir(XrdCl::FileSystem Efile, ...);
— MkDir(XrdCl::FileSystem *file, ...);

Arguments (remaining):
— path — base type: std::string
Operation status: XRootDStatus

Response: void

RmDir — remove remote directory

Signature:

— RmDir(XrdCl::FileSystem &file, ...
— RmDir(XrdCl::FileSystem *file, ...);

Arguments (remaining):
— path — base type: std::string
Operation status: XRootDStatus

Response: void

33

)i
);

);

);

)7.

e ChMod — change access mode on a remote directory or file

Signature:

— ChMod(XrdCl::FileSystem &file, ...);
— ChMod(XrdCl::FileSystem *file, ...);

Arguments (remaining):

— path — base type: std::string
— mode — base type: XrdCl::Access::Mode

Operation status: XRootDStatus

Response: void
e Ping — ping remote server
Signature:
— Ping(XrdCl::FileSystem &file);
— Ping(XrdCl::FileSystem *file);
Operation status: XRootDStatus

Response: void

e Stat — stat remote directory or file

Signature:

— Stat(XrdCl::FileSystem Efile, ...);
— Stat(XrdCl::FileSystem *file, ...);

Arguments (remaining):
— path — base type: std::string

Operation status: XRootDStatus
Response: XrdCl::StatInfo

e StatVFS — status information for a Virtual File System

Signature:

— StatVFS(XrdCl::FileSystem file, ...);
— StatVFS(XrdCl::FileSystem *file, ...);

Arguments (remaining):
— path — base type: std::string

Operation status: XRootDStatus
Response: XrdCl::StatInfoVFS

34

e Protocol — obtain server protocol information
Signature:
— Protocol(XrdCl::FileSystem &file);
— Protocol(XrdCl::FileSystem *file);
Operation status: XRootDStatus
Response: XrdCl::Protocollnfo
e DirList — list remote directory
Signature:
— DirList(XrdCl::FileSystem &file, ...);
— DirList(XrdCl::FileSystem *file, ...);
Arguments (remaining):
— path — base type: std::string
— flags — base type: XrdCl::DirListFlags::Flags
Operation status: XRootDStatus
Response: XrdCl::DirectoryList
e SendInfo — send info to remote server
Signature:

— SendInfo(XrdCl::FileSystem &file, ...);
— SendInfo(XrdCl::FileSystem *file, ...);

Arguments (remaining):
— info — base type: std::string

Operation status: XRootDStatus
Response: XrdCl::Buffer

e Prepare — prepare one or more files for access
Signature:
— Prepare(XrdCl::FileSystem Efile, ...);
— Prepare(XrdCl::FileSystem *file, ...);
Arguments (remaining):

— fileList — base type: std::vector<std::string>
— flags — base type: XrdCl::PrepareFlags::Flags
— priority — base type: wint§-t

Operation status: XRootDStatus
Response: XrdCl::Buffer

35

	Introduction
	Configuration File
	Command line tools (xrdcp/xrdfs)
	xrdcp - copy files
	xrdfs - xrootd file and directory meta-data utility
	Return Codes

	Environment Variables
	Categories
	Index of Environment Variables
	XRD_APPNAME
	XRD_CLIENTMONITOR
	XRD_CLIENTMONITORPARAM
	XRD_CONNECTIONWINDOW
	XRD_CONNECTIONRETRY
	XRD_CPCHUNKSIZE
	XRD_CPINITTIMEOUT
	XRD_CPPARALLELCHUNKS
	XRD_CPTPCTIMEOUT
	XRD_DATASERVERTTL
	XRD_GLFNREDIRECTOR
	XRD_LOADBALANCERTTL
	XRD_LOCALMETALINKFILE
	XRD_LOGFILE
	XRD_LOGLEVEL
	XRD_LOGMASK
	XRD_MAXMETALINKWAIT
	XRD_METALINKPROCESSING
	XRD_NETWORKSTACK
	XRD_NODELAY
	XRD_OPENRECOVERY
	XRD_PARALLELEVTLOOP
	XRD_PLUGIN
	XRD_PLUGINCONFDIR
	XRD_POLLERPREFERENCE
	XRD_PREFERIPV4
	XRD_READRECOVERY
	XRD_REDIRECTLIMIT
	XRD_REQUESTTIMEOUT
	XRD_RUNFORKHANDLER
	XRD_STREAMERRORWINDOW
	XRD_STREAMTIMEOUT
	XRD_SUBSTREAMSPERCHANNEL
	XRD_TCPKEEPALIVE
	XRD_TCPKEEPALIVEINTERVAL
	XRD_TCPKEEPALIVEPROBES
	XRD_TCPKEEPALIVETIME
	XRD_TIMEOUTRESOLUTION
	XRD_WORKERTHREADS
	XRD_WRITERECOVERY
	XRD_XCPBLOCKSIZE

	Timeouts Explained
	Connection Window and Connection Retry
	Stream Timeout
	Stream Error Window
	RequestTimeout
	Time To Live
	How does it all come together?
	xrdcp / XrdCl::CopyProcess Third-Party-Copy timeouts

	Client Declarative API
	Operation Utilities
	Operation Handlers
	Pipelining Semantics
	List of Operations
	File Operations
	FileSystem Operations

