Update on XCache tests at LMU Munich

G. Duckeck, N. Hartmann, C. A. Mitterer, R. Walker

LMU Munich

26th November 2019, DOMA/ACCESS meeting
Setup

- Hardware: Old dCache pool node (from 2012):
 - Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
 - 60 TB Raid-6 (2x12x3TB HDD)
 → second node with individual disks since November 2019

- Xrootd version 4.10.0

- Setup w/ singularity SL6 image. Full configuration:
 https://gitlab.physik.uni-muenchen.de/Nikolai.Hartmann/xcache-singularity-lrz/

- XCache settings:

 pfc.ram 14g
 pfc.blocksize 1M
 pfc.prefetch 10
Test XCache in ATLAS production queue

Last 3 months:

ATLAS production queue in Munich that retrieves all files via XCache

- Remote destination is nearby MPP Munich storage
- Can take a quite significant fraction of the jobs
- Works surprisingly well, given that all traffic goes through a single server
Caching works

→ Output volume already larger than input volume (≈ 1.8)
But hit rate depends on type of job

→ largest hit rate for MC Reconstruction (here mainly pileup overlay)
Access statistics from cinfo files

- Most reused files are HITS (pileup)
- EVNT files get reused when one file is processed via multiple jobs
- AOD files get reused for DAOD production (?)
Weighted by \(\text{size} \times \text{accesses} - \text{size} \)

Corresponding reduction in WAN traffic
(w.r.t reading everything from remote without cache)
Performance for parallel reads - Raid6 vs single disks

Feedback from xrootd developers: Use multidisk-mode instead of Raid (see slides from Matevž at XRootD workshop)

Raw reading tests at LRZ:

→ multi-disk mode might perform better than Raid for caching system
Performance for parallel reads - Raid6 vs single disks

Now similar test with an actual xcache setup:
(read random cached files through xcache, read from server)

→ same conclusion - individual disks outperform RAID for parallel reads
Multidisk XCache in ATLAS production queue

→ load and wait CPU drastically reduced for multidisk mode setup!
Stage-in times

XCache0 (RAID 6)

XCache1 (JBOD)

→ comparable stage-in times (with JBOD) as for non-xcache queue
Summary

- Successful running of xcache in ATLAS production environment
- Most reused files in current workflow from pileup overlay jobs
- Running XCache with individual disks beneficial (compared to RAID6)
 - significantly reduces load and wait times
 - peak I/O also increased for parallel disk reads/writes
Next plans

• Further stress testing:
 • Remove I/O limit on xcache queue
 • Run all jobs through xcache
• Combine the 2 xcache servers to a cluster
• Implement checksum test for fully cached files
 → long-term plan of developers: have blockwise checksums
• Continue tests with analysis jobs
• Test remote processing in practice
 (currently reading from neighbor site)
Backup
Bugs/Issues

Found 2 Problems when XCache is under high load:

- Number of open files increasing until system limit is hit
 (https://github.com/xrootd/xrootd/issues/975) → fix in work
 → partially mitigated by settings: pss.ciosync 60 900

- Segfaults/Crashes
 (https://github.com/xrootd/xrootd/issues/1026)
 → mostly fixed in xrootd 4.10, but occasionally still seen for very high load (pileup jobs)

Lead to corrupted files: wrong checksum for file in cache, ≈ 90 out of 200k files
→ not observed any more after fixes/mitigations
→ still, we want to have a check for corrupted files in the future
Central monitoring for ATLAS XCaches

Since a few weeks we are (together with other ATLAS XCaches) monitoring file access statistics to an ElasticSearch instance in Chicago
Access statistics from cinfo files - detailed

By scope

By data type
Which HITS?

Add info from rucio (parent DID name)

![Graph showing the number of times accessed for HITS minbias and HITS other.

- HITS minbias
- HITS other

The graph displays the number of accesses for HITS minbias and HITS other, with HITS minbias having significantly more accesses than HITS other.]